Behavior of peripheral rods and their role in the life cycle of Myxococcus xanthus.

نویسندگان

  • K A O'Connor
  • D R Zusman
چکیده

Myxococcus xanthus is a gram-negative bacterium with a complex life cycle including a developmental phase in which cells aggregate and sporulate in response to starvation. In previous papers, we have described a heretofore unsuspected layer of complexity in the development of M. xanthus: vegetatively growing cells differentiate into two cell types during development. In addition to the differentiation of spores within fruiting bodies, a second cell type, peripheral rods, arises outside fruiting bodies. The pattern of expression of proteins in peripheral rods is different from that of either vegetatively growing cells or spores, and peripheral rods express a number of recognized developmental markers. In this report, we examine four aspects of the biology of peripheral rods: (i) the influence of nutrients on the proportion of peripheral rods in a population of developing cells, (ii) the capacity of peripheral rods to recapitulate development, (iii) the development of peripheral rods on conditioned medium, and (iv) the ability of peripheral rods to resume growth on low amounts of exogenously added nutrients. The results of these studies suggest that peripheral rods play a significant role in the life cycle of M. xanthus by allowing the exploitation of low amounts or transient influxes of nutrients without the investment of energy in spore germination. The differentiation of vegetatively growing cells into two cell types that differ significantly in biology, shape, and localization within the population has been incorporated into a model of the life cycle of M. xanthus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential expression of the three multicopper oxidases from Myxococcus xanthus.

Myxococcus xanthus is a soil bacterium that undergoes a unique life cycle among the prokaryotes upon starvation, which includes the formation of macroscopic structures, the fruiting bodies, and the differentiation of vegetative rods into coccoid myxospores. This peculiarity offers the opportunity to study the copper response in this bacterium in two different stages. In fact, M. xanthus vegetat...

متن کامل

Spatial control of cell differentiation in Myxococcus xanthus.

Myxococcus xanthus develops species-specific multicellular fruiting bodies. Starting from a uniform mat of cells, some cells enter into nascent fruiting body aggregates, whereas other cells remain outside. The cells within the fruiting body differentiate from rods into spherical, heat-resistant spores, whereas the cells outside the aggregates, called peripheral cells, remain rod-shaped. Early d...

متن کامل

Regulation of motility behavior in Myxococcus xanthus may require an extracytoplasmic-function sigma factor.

Using interaction trap technology, we identified a putative extracytoplasmic-function (ECF) sigma factor (RpoE1) in Myxococcus xanthus, a bacterium which has a complex life cycle that includes fruiting body formation. The first domain of the response regulator protein FrzZ, a component of the Frz signal transduction system, was used as bait. Although the RpoE1 protein displayed no interactions ...

متن کامل

Mechanism for Collective Cell Alignment in Myxococcus xanthus Bacteria

Myxococcus xanthus cells self-organize into aligned groups, clusters, at various stages of their lifecycle. Formation of these clusters is crucial for the complex dynamic multi-cellular behavior of these bacteria. However, the mechanism underlying the cell alignment and clustering is not fully understood. Motivated by studies of clustering in self-propelled rods, we hypothesized that M. xanthus...

متن کامل

Myxobacteria: Moving, Killing, Feeding, and Surviving Together

Myxococcus xanthus, like other myxobacteria, is a social bacterium that moves and feeds cooperatively in predatory groups. On surfaces, rod-shaped vegetative cells move in search of the prey in a coordinated manner, forming dynamic multicellular groups referred to as swarms. Within the swarms, cells interact with one another and use two separate locomotion systems. Adventurous motility, which d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 173 11  شماره 

صفحات  -

تاریخ انتشار 1991